Bei der Berechnung eines laufenden gleitenden Mittels ist es sinnvoll, den Mittelwert in der mittleren Zeitperiode einzutragen. Im vorigen Beispiel wurde der Durchschnitt der ersten 3 Zeiträume berechnet und neben der Periode 3 platziert. Wir konnten den Mittelwert in der Mitte des Zeitintervall von drei Perioden, das heißt, neben Periode 2. Dies funktioniert gut mit ungeraden Zeitperioden, aber nicht so gut für sogar Zeitperioden. Also, wo würden wir den ersten gleitenden Durchschnitt platzieren, wenn M 4 Technisch, würde der Moving Average bei t 2,5, 3,5 fallen. Um dieses Problem zu vermeiden, glätten wir die MAs unter Verwendung von M 2. So glätten wir die geglätteten Werte Wenn wir eine gerade Anzahl von Ausdrücken mitteln, müssen wir die geglätteten Werte glätten. Die folgende Tabelle zeigt die Ergebnisse mit M 4.Moving Average Dieses Beispiel lehrt Sie Wie man den gleitenden Durchschnitt einer Zeitreihe in Excel berechnet. Eine Bewegung wird verwendet, um Unregelmäßigkeiten (Spitzen und Täler) zu glätten, um Trends leicht zu erkennen. 1. Erstens, werfen wir einen Blick auf unsere Zeitreihe. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Klicken Sie hier, um das Analyse-ToolPak-Add-In zu laden. 3. Wählen Sie Verschiebender Durchschnitt aus, und klicken Sie auf OK. 4. Klicken Sie im Feld Eingabebereich auf den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3 aus. 8. Zeichnen Sie ein Diagramm dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der letzten 5 Datenpunkte und der aktuelle Datenpunkt. Als Ergebnis werden Spitzen und Täler geglättet. Die Grafik zeigt eine zunehmende Tendenz. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da nicht genügend frühere Datenpunkte vorhanden sind. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Spitzen und Täler geglättet. Je kleiner das Intervall, desto näher sind die gleitenden Mittelwerte zu den tatsächlichen Datenpunkten.
No comments:
Post a Comment